4.4 Article

Influence of atherosclerosis on the molecular expression of the TRPC1/BK signal complex in the aortic smooth muscles of mice

期刊

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2021.10926

关键词

large-conductance calcium-activated potassium channels; atherosclerosis; myocytes; smooth muscle; gene knockout techniques

向作者/读者索取更多资源

This study found that the protein and mRNA expression levels of the TRPC1/BK signal complex in the aortic vascular smooth muscle tissue are influenced by the development of AS in mice, suggesting it could be a potential therapeutic target for AS-related complications.
Atherosclerosis (AS) is one a disease that seriously endangers human health. Previous studies have demonstrated that transient receptor potential channel-1 (TRPC1)/large conductance Ca2+ activated K+ channel (BK) signal complex is widely distributed in arteries. Therefore, it was hypothesized that TRPC1-BK signal complex may be a new target for the treatment of AS-related diseases. Apolipoprotein E-/- (ApoE(-/-)) mice were used to establish an atherosclerotic animal model in the present study, and the association between AS and the TRPC1-BK signal complex was examined. The present study aimed to compare the differences in the expression levels of mRNAs and proteins of the TRPC1-BK signal complex expressed in the aortic vascular smooth muscle tissue, between mice with AS and control mice. There were 10 mice in each group. Reverse transcription PCR, western blotting and immunohistochemistry were used to detect the differences in the mRNA and protein expression levels of TRPC1, BK alpha (the alpha subunit of BK) and BK beta(1) (the beta(1) subunit of BK). The mRNA expression level of TRPC1 in AS model mice was significantly higher compared with that in the control group (P<0.05). However, the mRNA expression levels of BK alpha and BK beta(1) were lower compared with those in the controls (both P<0.01). The mice in the ApoE(-/-) group successfully developed AS. In this group, the protein expression level of TRPC1 was significantly higher than that in the control group (P<0.01), while the protein expression levels of BK alpha and BK beta(1) were lower compared with those in the control group (P<0.01 and P<0.05, respectively). Collectively, it was identified that the protein and mRNA expression levels of the TRPC1/BK signal complex in the aortic vascular smooth muscle tissue could be influenced by the development of AS in mice. Hence, the TRPC1/BK signal complex may be a potential therapeutic target for the prevention and treatment of AS-related complications in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据