4.7 Article

Single-cell RNA-seq highlights a specific carcinoembryonic cluster in ovarian cancer

期刊

CELL DEATH & DISEASE
卷 12, 期 11, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41419-021-04358-4

关键词

-

资金

  1. National Natural Science Foundation of China [81672838]
  2. Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding [XMLX201705]
  3. Beijing Municipal Science and Technology Commission [Z181100001718193]

向作者/读者索取更多资源

The study explored the heterogeneity of ovarian cancer through single-cell RNA-seq and identified a subtype associated with poor survival and clinical response. Utilizing specific gene profiles, four phenotypes with different survival and response to immunotherapy were identified, advancing the understanding of OC pathogenesis and leading to promising therapeutic strategies.
Expounding the heterogeneity for ovarian cancer (OC) with the cognition in developmental biology might be helpful to search for robust prognostic markers and effective treatments. In the present study, we employed single-cell RNA-seq with ovarian cancers, normal ovary, and embryo tissue to explore their heterogeneity. Then the differentiation process of clusters was explored; the pivotal cluster and markers were identified. Furthermore, the consensus clustering algorithm was used to explore the different clinical phenotypes in OC. At last, a prognostic model was construct and used to assess the prognosis for OCs. As a result, eight diverse clusters were identified, and the similarity existed in some clusters between embryo and tumours based on their gene expression. Meaningfully, a subtype of malignant epithelial cluster, PEG10(+) EME, was associated with poor survival and was an intermediate stage of embryo to tumour. PEG10 was a CSC marker and might influence CSC self-renewal and promote cisplatin resistance via NOTCH pathway. Utilising specific gene profiles of PEG10(+) EME based on public data sets, four phenotypes with different survival and clinical response to anti-PD-1/PD-L1 immunotherapy were identified. These insights allowed for the investigation of single-cell transcriptome of OCs and embryo, which advanced our current understanding of OC pathogenesis and resulted in promising therapeutic strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据