4.7 Article

Role of GALNT4 in protecting against cardiac hypertrophy through ASK1 signaling pathway

期刊

CELL DEATH & DISEASE
卷 12, 期 11, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41419-021-04222-5

关键词

-

资金

  1. National Natural Science Foundation of China [81770047]
  2. Scientific and Technological Project of Henan Province [202102310364]
  3. Henan Charity General Federation-Hepatobiliary Foundation of Henan charity General Federation [GDXZ2021003]

向作者/读者索取更多资源

Pathological myocardial hypertrophy is regulated by multiple pathways, and the study demonstrated the role of GALNT4 in myocardial hypertrophy. GALNT4 acts by blocking the activation of the ASK1 signaling cascade to affect the degree of hypertrophy and cardiac function.
Pathological myocardial hypertrophy is regulated by multiple pathways. However, its underlying pathogenesis has not been fully explored. The goal of this work was to elucidate the function of polypeptide N-acetylgalactosaminyltransferase 4 (GALNT4) in myocardial hypertrophy and its underlying mechanism of action. We illustrated that GALNT4 was upregulated in the models of hypertrophy. Two cardiac hypertrophy models were established through partial transection of the aorta in GALNT4-knockout (GALNT4-KO) mice and adeno-associated virus 9-GALNT4 (AAV9-GALNT4) mice. The GALNT4-KO mice demonstrated accelerated cardiac hypertrophy, dysfunction, and fibrosis, whereas the opposite phenotype was observed in AAV9-GALNT4 mice. Similarly, GALNT4 overexpression mitigated the degree of phenylephrine-induced cardiomyocyte hypertrophy in vitro whereas GALNT4 knockdown aggravated the hypertrophy. In terms of mechanism, GALNT4 deficiency increased the phosphorylation and activation of ASK1 and its downstream targets (JNK and p38), whereas GALNT4 overexpression inhibited activation of the ASK1 pathway. Furthermore, we demonstrated that GALNT4 can directly bind to ASK1 inhibiting its N-terminally mediated dimerization and the subsequent phosphorylation of ASK1. Finally, an ASK1 inhibitor (iASK1) was able to reverse the effects of GALNT4 in vitro. In summary, GALNT4 may serve as a new regulatory factor and therapeutic target by blocking the activation of the ASK1 signaling cascade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据