4.4 Article

A class of finite difference schemes for interface problems with an HOC approach

期刊

出版社

WILEY
DOI: 10.1002/fld.4231

关键词

interface; HOC scheme; Navier-Stokes equation; discontinuous coefficients; non-uniform grids; von Karman vortex street

资金

  1. Seed Grant Project of IIT Mandi [IITM/SG/RRY/009]

向作者/读者索取更多资源

In this paper, we propose a new methodology for numerically solving elliptic and parabolic equations with discontinuous coefficients and singular source terms. This new scheme is obtained by clubbing a recently developed higher-order compact methodology with special interface treatment for the points just next to the points of discontinuity. The overall order of accuracy of the scheme is at least second. We first formulate the scheme for one-dimensional (1D) problems, and then extend it directly to two-dimensional (2D) problems in polar coordinates. In the process, we also perform convergence and related analysis for both the cases. Finally, we show a new direction of implementing the methodology to 2D problems in cartesian coordinates. We then conduct numerous numerical studies on a number of problems, both for 1D and 2D cases, including the flow past circular cylinder governed by the incompressible Navier-Stokes equations. We compare our results with existing numerical and experimental results. In all the cases, our formulation is found to produce better results on coarser grids. For the circular cylinder problem, the scheme used is seen to capture all the flow characteristics including the famous von Karman vortex street. Copyright (c) 2016 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据