4.6 Article

Microscale modeling of effective mechanical and electrical properties of textiles

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.5268

关键词

-

资金

  1. Army Research Laboratory through the Army High Performance Computing Research Center [W911NF-07-2-0027]

向作者/读者索取更多资源

A computational framework for assisting in the development of novel textiles is presented. Electronic textiles are key in the rapidly growing field of wearable electronics for both consumer and military uses. There are two main challenges to the modeling of electronic textiles: the discretization of the textile microstructure and the interaction between electromagnetic and mechanical fields. A director-based beam formulation with an assumed electrical current is used to discretize the fabric at the level of individual fibrils. The open-source package FEniCS was used to implement the finite element model. Contact integrals were added into the FEniCS framework so that multiphysics contact laws can be incorporated in the same framework, leveraging the code generation and automated differentiation capabilities of FEniCS to produce the tangents needed by the implicit solution method. The computational model is used to construct and determine the mechanical, thermal, and electrical properties of a representative volume elements of a plain woven textile. Dynamic relaxation to solve the mechanical fields and the electrical and thermal fields is solved statically for a given mechanical state. The simulated electrical responses are fit to a simplified Kirchhoff network model to determine effective resistances of the textile. Copyright (c) 2016 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据