4.7 Article

Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips

期刊

BIOFABRICATION
卷 14, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1758-5090/ac2d78

关键词

digital-light-processing; organ-on-a-chip; microfluidics; hydrogel models

资金

  1. National Institutes of Health (NIH) [R21-DC18818]

向作者/读者索取更多资源

This study developed a multi-material DLP-based bioprinter for rapid prototyping of hydrogel-based microfluidic chips. The optimized composite hydrogel bioink allows for a wide range of mechanical properties. The biofabrication approach offers a useful tool for integrating micro-tissue models into organs-on-chips and high-throughput drug screening platforms.
Recent advancements in digital-light-processing (DLP)-based bioprinting and hydrogel engineering have enabled novel developments in organs-on-chips. In this work, we designed and developed a multi-material, DLP-based bioprinter for rapid, one-step prototyping of hydrogel-based microfluidic chips. A composite hydrogel bioink based on poly-ethylene-glycol-diacrylate (PEGDA) and gelatin methacryloyl (GelMA) was optimized through varying the bioprinting parameters such as light exposure time, bioink composition, and layer thickness. We showed a wide range of mechanical properties of the microfluidic chips for various ratios of PEGDA:GelMA. Microfluidic features of hydrogel-based chips were then tested using dynamic flow experiments. Human-derived tumor cells were encapsulated in 3D bioprinted structures to demonstrate their bioactivity and cell-friendly environment. Cell seeding experiments then validated the efficacy of the selected bioinks for vascularized micro-tissues. Our biofabrication approach offers a useful tool for the rapid integration of micro-tissue models into organs-on-chips and high-throughput drug screening platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据