4.2 Article

Flow and heat over a rotating disk subject to a uniform horizontal magnetic field

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/zna-2021-0350

关键词

exponential solutions; heat transfer; horizontal magnetic field; rotating disk; similarity equations; wall shears

向作者/读者索取更多资源

This study investigates the application of a horizontal uniform magnetic field in stabilizing the flow field and its effects on the energy equation. With the help of traditional von Karman similarity transformations, a similarity system of equations is derived, and the development of velocity and temperature fields under the magnetic field is numerically investigated. The existence of exact series solutions using decaying exponential functions is discussed, and the critical roles of the horizontal magnetic field on physical quantities are highlighted.
Magnetic field is often applied to stabilize the flow field in real life applications of fluid mechanics problems. In the present work, it is employed a horizontal uniform magnetic field to regularize the flow field triggered due to a rotating disk. The energy equation is also studied subjected to such a horizontal magnetic field. The applied horizontal magnetic field is different from the well-known applied external vertical magnetic field. It is shown that the horizontal magnetic field leads to a similarity system of equations with the help of the traditional von Karman similarity transformations. The effects of such a magnetic field on the development of velocity and temperature fields are then numerically investigated. The existence of exact series solutions in terms of decaying exponential functions is further discussed. The critical roles of horizontal magnetic field on the physical quantities involving the local wall shears, torque and the heat transfer rate are finally highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据