4.8 Article

Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms

期刊

WATER RESEARCH
卷 206, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117741

关键词

Microalgal residue; Biochar-based membrane; Advanced oxidation process; Carbocatalysis; Synchronous pollutant removal

向作者/读者索取更多资源

The study developed a membrane based on microalgal biochar for the treatment of complex wastewater, demonstrating unique separation and catalytic properties. The MBCM/AOPs system showed high efficiency in removing emulsions and organic pollutants from wastewater, achieving high separation and degradation rates.
In this study, we applied a flexible strategy to manufacture a microalgal biochar-based membrane (MBCM). Due to the hierarchical surface topography on a micro-nano scale, the MBCM was found to have both underwater superoleophobic and underoil superhydrophobic properties. Combining an underoil superhydrophobic oilcontaining region (OCR) with an underwater superoleophobic water-containing region (WCR) achieved the successive filtration of multiphase emulsions. The MBCM also served as a high-performance carbocatalyst for advanced oxidation processes (AOPs), due to the N functionalities (5.08%) of the graphene-like structure. This was caused by the high-temperature pyrolysis of rich proteins and alkaline salts in the algal residue. As a result, the MBCM/AOPs system achieved greater than 99.5% emulsions separation efficiency in different emulsion mixtures, while also achieving an outstanding degradation rate (99.8%) of soluble organic contaminants (SOCs). This in-depth exploration resulted in a low-cost and green strategy for developing multifunctional membranes to treat complex wastewater. The paper explains the mechanisms used by MBCM to synchronously remove emulsions and SOCs from wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据