4.8 Article

The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals

期刊

WATER RESEARCH
卷 208, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117879

关键词

Microplastics; Photodegradation; Clay mineral; Degradation mechanism; 2D-COS

资金

  1. National Natural Science Foundationof China [41977307]
  2. National Key Research and Develop-ment Program of China [2019YFC1804101]

向作者/读者索取更多资源

This study systematically investigated the photodegradation behaviors of PVC and PET in the presence of clay minerals. The results demonstrated that clay minerals, particularly kaolinite, significantly promoted the photodegradation of MPs, with a more pronounced effect on PET aging. Additionally, the study revealed that UV irradiation facilitated the photo-ionization reactions, leading to the generation of key reactive oxygen species contributing to the degradation of MPs.
It is well known that microplastics (MPs) may experience weathering and aging under ultraviolet light (UV) irradiation, but it remains unclear if these processes are impacted by natural components, such as clay minerals. In this study, we systematically investigated the photodegradation behaviors of polyvinyl chloride (PVC) and poly (ethylene terephthalate) (PET), two utmost used plastics, in the presence of clay minerals (kaolinite and montmorillonite). The results demonstrated that the clay minerals, particularly kaolinite, significantly promoted the MPs photodegradation, and the aging of PET was more prominent. The photodegradation was the most distinct at pH 7.0, regardless of the presence or absence of the clay minerals. The results of electron paramagnetic resonance and inhibition experiments of reactive oxygen species indicated that the minerals, particularly kaolinite, remarkably facilitated production of center dot OH, which was the key species contributing to the photodegradation of MPs. Specifically, UV irradiation facilitated the photo-ionization of MPs, producing hydrated electrons and MP radical cations (MP+). The Lewis base sites prevalent on the clay siloxane surfaces could stabilize the MP radical cations and prevent their recombination with hydrated electrons, which promoted the generation of center dot OH under aerobic conditions, and facilitated the degradation of MP. Two-dimensional (2D) Fourier transformation infrared (FTIR) correlation spectroscopy (COS) analysis and ultra-high-performance liquid chromatography coupled to a Q Exactive Orbitrap HF mass spectrometer were used to identify the sequential changes of functional groups, and the degradation products of the MPs. This study improves our understanding on the aging of MPs in the complex natural environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据