4.8 Article

Sustainable micropollutant bioremediation via stormwater biofiltration system

期刊

WATER RESEARCH
卷 214, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118188

关键词

Bioaugmentation; Micropollutants; Atrazine; Adsorption-biodegradation; Stormwater management; Ecological engineering

资金

  1. Monash Ben-Gurion Seed Fund

向作者/读者索取更多资源

This study aimed to improve the design of stormwater biofiltration systems for the removal of micropollutants and understand the role of micropollutant-degrading bacteria. The addition of granulated activated carbon to the filter media significantly enhanced the removal of atrazine, a model micropollutant, and accelerated its degradation. The prototype biofiltration system showed the potential for sustainable microbial remediation alongside the removal of stormwater macropollutants without compromising the overall removal performance.
Waters contaminated with micropollutants are of environmental and public health concern globally. Stormwater is a significant source of anthropogenic micropollutants to receiving waters. Hence, sustainable stormwater remediation is needed to reduce contamination of waterways. Yet designing sustainable bioremediation solutions, including those targeted to remove micropollutants, is a major scientific challenge. This study aimed to adapt the design of stormwater biofiltration systems, to improve the removal of micropollutants and understand the role of the micropollutant-degrading bacteria in this bioremediation process. We investigated the atrazine removal performance of a prototype biofiltration system, in which the filter media was supplemented with Granulated Activated Carbon (GAC). The prototype biofiltration system completely removed atrazine to below detectable limits, significantly exceeding the GAC's adsorption capacity alone, suggesting other biological processes were present. We showed that atrazine degradation capacity, measured by the kinetics of the trzN gene abundance, was accelerated in the prototype system compared to the standard system (which had no added GAC; 0.8 vs. 0.37 week(-1), respectively). Notably, this high level of atrazine removal did not come at the expense of the removal performance of other typical stormwater macropollutants (e.g., nutrients, suspended solids). The prototype biofiltration system showed a proof-of-concept of sustaining microbial remediation of a model micropollutant alongside stormwater macropollutants, which could be used to reduce impacts on receiving waterways and protect our ecosystems and human health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据