4.8 Article

Glycine adversely affects enhanced biological phosphorus removal

期刊

WATER RESEARCH
卷 209, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117894

关键词

Glycine; Polyphosphate accumulating organisms (PAOs); Glycogen accumulating organisms (GAOs); Enhanced biological phosphorus removal; (EBPR); P release; P removal

资金

  1. National Natural Science Foundation of China [51808297]
  2. Natural Science Foundation of Guangdong Province, China [2021A1515010494]
  3. Science and Technology Program of Guangzhou, China [202002030340]
  4. Pearl River Talent Recruitment Program [2019QN01L125]
  5. Program for Science and Technology of Guangdong Province, China [2018A050506009]
  6. Singapore National Research Foundation
  7. Ministry of Education under the Research Centre of Excellence Programme
  8. National Research Foundation under its Environment and Water Industry Programme [1102-IRIS-10-02]

向作者/读者索取更多资源

Glycine does not appear to be an effective carbon source for the majority of PAOs and GAOs in full-scale and lab-scale systems, and other community members do not utilize glycine under anaerobic or aerobic conditions.
Enhanced biological phosphorus removal (EBPR) is used extensively in full-scale wastewater treatment plants for the removal of phosphorus. Despite previous evidence showing that glycine is a carbon source for a certain lineage of polyphosphate accumulating organisms (PAOs) such as Tetrasphaera, it is still unknown whether glycine can support EBPR. We observed an overall adverse effect of glycine on EBPR using activated sludge from both full-scale wastewater treatment plants and lab-scale reactors harboring distant and diverse PAOs and glycogen accumulating organisms (GAOs), including Candidatus Accumulibacter, Thiothrix, Tetrasphaera, Dechloromonas, Ca. Competibacter, and Defluviicoccus, among others. Glycine induced phosphorus (P) release under anaerobic conditions without being effectively taken up by cells. The induced P release rate correlated with glycine concentration in the range of 10 to 50 mg C/L. PAOs continued to release P in the presence of glycine under aerobic conditions without any evident P uptake. Under mixed carbon conditions, the occurrence of glycine did not seem to affect acetate uptake; however, it significantly reduced the rate of P uptake in the aerobic phase. Overall, glycine did not appear to be an effective carbon source for a majority of PAOs and GAOs in fullscale and lab-scale systems, and neither did other community members utilize glycine under anaerobic or aerobic conditions. Metatranscriptomic analysis showed the transcription of glycine cleavage T, P and H protein genes, but not of the L protein or the downstream genes in the glycine cleavage pathway, suggesting barriers to metabolizing glycine. The high transcription of a gene encoding a drug/metabolite transporter suggests a potential efflux mechanism, where glycine transported into the cells is in turn exported at the expense of ATP, resulting in P release without affecting the glycine concentration in solution. The ability of glycine to induce P release without cellular uptake suggests a way to effectively recover P from P-enriched waste sludge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据