4.8 Article

Superabsorbent polymer as a supplement substrate of constructed wetland to retain pesticides from agricultural runoff

期刊

WATER RESEARCH
卷 207, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117776

关键词

Superabsorbent polymer; Constructed wetland; Hydrophilic pesticide; Retention; Sorption

资金

  1. EU by the Water JPI-2015 AWARE project [PCIN-2017-067]
  2. Research of Council of Norway [RCN 272309/E50]
  3. China Scholarship Council (CSC)
  4. NIBIO
  5. UFZ
  6. ELECTRA project - European Union [826244]

向作者/读者索取更多资源

This study investigated the use of superabsorbent polymer (SAP) as a supplement to constructed wetlands (CWs) for enhanced removal of hydrophilic pesticides. The results showed that SAP improved the retention of neutral pesticides in the gel-water phase of w-SAP, while also enhancing the removal of pesticides in lab-scale CWs contaminated by runoff water. Overall, the addition of SAP in CWs led to a significant increase in the removal efficiency of various pesticides, especially hydrophilic ones.
Surface water runoff can export pesticides from agricultural fields into adjacent aquatic ecosystems, where they may pose adverse effects to organisms. Constructed wetlands (CWs) are widely used to treat agricultural runoff contaminated by pesticides, but the removal of hydrophilic pesticides is usually low. In this study, we suggest superabsorbent polymer (SAP), a cross-linked hydrophilic polymer, as a supplement to substrates of CWs and tested the hypothesis that SAP results in an enhanced removal of hydrophilic pesticides. Therefore, batch experiments were conducted to study the retention capacity of water-saturated SAP (w-SAP) for several hydrophilic pesticides. Retention of the pesticides on w-SAP was related to the ionization state and water solubility of the pesticides. The retention of neutral pesticides, imidacloprid, metalaxyl and propiconazole, was about 20% higher than that measured for anionic pesticides, bentazone, glyphosate and MCPA. The retention of the pesticides by wSAP mainly resulted from their distribution in the gel-water phase of w-SAP, while less water soluble pesticides might have also been adsorbed on the molecular backbone of SAP. Furthermore, we tested the efficacy of w-SAP for treatment of runoff water contaminated by pesticides in lab-scale horizontal subsurface flow CWs. SAP in CWs improved the removal of the pesticides, including the recalcitrant ones. The removal enhancement was owing to the increase of hydraulic retention time and improvement of biodegradation. The removal of the pesticides in SAP containing CWs was > 93% for MCPA, glyphosate, and propiconazole, 62 - 99% for imidacloprid, 50 - 84% for metalaxyl, and 38 - 73% for bentazone. In the control gravel CWs, the removal was > 98% for glyphosate, generally > 83% for MCPA and propiconazole, 46 - 98% for imidacloprid, 32 - 97% for metalaxyl, and 9 - 96% for bentazone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据