4.8 Article

Cationic polyacrylamide alleviated the inhibitory impact of ZnO nanoparticles on anaerobic digestion of waste activated sludge through reducing reactive oxygen species induced

期刊

WATER RESEARCH
卷 205, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117651

关键词

Waste activated sludge; Anaerobic digestion; Zinc oxide nanoparticles; Cationic polyacrylamide

资金

  1. National Natural Science Foundation of China (NSFC) [52070075, 51679084]
  2. Natural Science Foundation of Hunan Province [2020JJ4187]
  3. Postgraduate Scientific Research Innovation Project of Hunan Province [CX20200417]

向作者/读者索取更多资源

The appropriate amount of cationic polyacrylamide (cPAM) was found to mitigate the toxicity of zinc oxide nanoparticles (ZnO NPs) on waste activated sludge (WAS) anaerobic digestion, ultimately promoting subsequent bio-utilization.
The enrichment of zinc oxide nanoparticles (ZnO NPs) in waste activated sludge (WAS) has raised concerns about their potential impact on anaerobic digestion of WAS. To date, there is no information regarding how to attenuate the negative effects of ZnO NPs on WAS anaerobic digestion. In this study, it was found that the appropriate amount of cationic polyacrylamide (cPAM) could mitigate the toxicity of ZnO NPs. During short -term exposure, the supplement of 4.0 mg cPAM/g TSS significantly restored biochemical methane potential from 28.6% inhibition to 9.3% inhibition compared with the control digester (P < 0.01). The spiked cPAM promoted the solubilization and acidification stages by weakening the contact between ZnO NPs and anaerobes in anaerobic digestion process, thus providing abundant substance for sequent bio-utilization. In the long-term semi-continues operated reactor, the continuous replacement of cPAM (at 4.0 mg/g TSS) significantly strengthened the recovery of VS destruction rate (20.3% to 26.4%, P < 0.01) and the daily yield of methane (93.5 mL/d to 124.2 mL/d, P < 0.01). Consistent with the restored performance, the application of cPAM increased the total microbial communities and the relative abundances of dominant acidogens and methanogens. Further explorations showed decreased toxicity of ZnO NPs primarily attributed to the decline of reactive oxygen species (ROS) induced by ZnO NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据