4.5 Review

Regulation of plant antiviral defense genes via host RNA-silencing mechanisms

期刊

VIROLOGY JOURNAL
卷 18, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12985-021-01664-3

关键词

Resistance; dsRNAs; VAMPs; PRRs; NLRs; Broad-spectrum resistance; RNA silencing

类别

向作者/读者索取更多资源

Viruses interact with plants through RNA-silencing mechanisms and the innate immune system. The activation of pattern-triggered immunity (PTI) by viruses in plant cells can be counteracted by viral suppression. Intracellular immune receptors may detect viral Avirulence proteins to trigger effector-triggered immunity (ETI).
Background Plants in nature or crops in the field interact with a multitude of beneficial or parasitic organisms, including bacteria, fungi and viruses. Viruses are highly specialized to infect a limited range of host plants, leading in extreme cases to the full invasion of the host and a diseased phenotype. Resistance to viruses can be mediated by various passive or active mechanisms, including the RNA-silencing machinery and the innate immune system. Main text RNA-silencing mechanisms may inhibit viral replication, while viral components can elicit the innate immune system. Viruses that successfully enter the plant cell can elicit pattern-triggered immunity (PTI), albeit by yet unknown mechanisms. As a counter defense, viruses suppress PTI. Furthermore, viral Avirulence proteins (Avr) may be detected by intracellular immune receptors (Resistance proteins) to elicit effector-triggered immunity (ETI). ETI often culminates in a localized programmed cell death reaction, the hypersensitive response (HR), and is accompanied by a potent systemic defense response. In a dichotomous view, RNA silencing and innate immunity are seen as two separate mechanisms of resistance. Here, we review the intricate connections and similarities between these two regulatory systems, which are collectively required to ensure plant fitness and resilience. Conclusions The detailed understanding of immune regulation at the transcriptional level provides novel opportunities for enhancing plant resistance to viruses by RNA-based technologies. However, extensive use of RNA technologies requires a thorough understanding of the molecular mechanisms of RNA gene regulation. We describe the main examples of host RNA-mediated regulation of virus resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据