4.3 Article

Diversity of bacterial pathogens and their antimicrobial resistance profile among commensal rodents in Qatar

期刊

VETERINARY RESEARCH COMMUNICATIONS
卷 46, 期 2, 页码 487-498

出版社

SPRINGER
DOI: 10.1007/s11259-021-09876-2

关键词

Commensal rodents; Gram-negative bacteria; Rickettsia; Antimicrobial resistance; Qatar

资金

  1. Ministry of Public Health, Qatar

向作者/读者索取更多资源

This study investigated bacterial pathogens and antimicrobial resistance patterns in commensal rodents in Qatar. The results indicated the presence of various pathogenic bacteria in rodents, with a proportion of strains exhibiting multidrug resistance. These findings suggest that rodents may serve as potential sources of infection for humans and animals in Qatar.
Rodents are sources of many zoonotic pathogens that are of public health concern. This study investigated bacterial pathogens and assessed their antimicrobial resistance (AMR) patterns in commensal rodents in Qatar. A total of 148 rodents were captured between August 2019 and February 2020, and blood, ectoparasites, and visceral samples were collected. Gram-negative bacteria were isolated from the intestines, and blood plasma samples were used to detect antibodies against Brucella spp., Chlamydophila abortus, and Coxiella burnetii. PCR assays were performed to detect C. burnetii, Leptospira spp., Rickettsia spp., and Yersinia pestis in rodent tissues and ectoparasite samples. Antimicrobial resistance by the isolated intestinal bacteria was performed using an automated VITEK analyzer. A total of 13 bacterial species were isolated from the intestine samples, namely Acinetobacter baumannii, Aeromonas salmonicida, Citrobacter freundii, Citrobacter koseri, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella pneumoniae, Providencia stuartii, Proteus mirabilis, Pseudomonas aeruginosa, and Salmonella enterica. The majority of them were E. coli (54.63%), followed by P. mirabilis (17.59%) and K. pneumoniae (8.33%). Most of the pathogens were isolated from rodents obtained from livestock farms (50.46%), followed by agricultural farms (26.61%) and other sources (22.94%). No antibodies (0/148) were detected against Brucella spp., C. abortus, or C. burnetii. In addition, 31.58% (6/19) of the flea pools and one (1/1) mite pool was positive for Rickettsia spp., and no sample was positive for C. burnetii, Leptospira spp., and Y. pestis by PCR. A total of 43 (38%) bacterial isolates were identified as multidrug resistant (MDR), whereas A. salmonicida (n = 1) did not show resistance to any tested antimicrobials. Over 50% of bacterial MDR isolates were resistant to ampicillin, cefalotin, doxycycline, nitrofurantoin, and tetracycline. The presence of MDR pathogens was not correlated with rodent species or the location of rodent trapping. Seven (11.86%) E. coli and 2 (22.2%) K. pneumoniae were extended-spectrum beta-lactamases (ESBL) producers. These findings suggest that rodents can be a source of opportunistic bacteria for human and animal transmission in Qatar. Further studies are needed for the molecular characterization of the identified bacteria in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据