4.6 Article

Optical and electrical properties of hard (Hf,Nb,Ti,V,Zr)Nx thin films

期刊

VACUUM
卷 193, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2021.110517

关键词

Multi-component; High entropy; Nitride; Optical properties; Mechanical properties; Sputter deposition

资金

  1. E. och K.G. Lennanders foundation

向作者/读者索取更多资源

The research found that (Hf, Nb, Ti, V, Zr)N-x nitride coatings exhibit different crystal structures and hardness, varied electrical resistivity, possess plasmonic properties, and their optical properties are tunable, indicating the potential to design new optical materials.
(Hf,Nb,Ti,V,Zr)N-x coatings with nitrogen content between 0 and 49 at.% were deposited by sputter deposition, and thoroughly characterised. Nitrogen-free coatings were found to have a bcc structure, low hardness (8 GPa), and an electrical resistivity of 144 mu Omega cm. The nitride coatings (43-49 at.% N) had NaCl-type structure, consistent with a multi-component solid solution phase. Photoelectron core level binding energies indicate that the electronic structure of the multi-component nitride differs from that of the binary nitrides, probably a result of charge transfer between the metal atoms. The nitride coatings exhibited a dense microstructure and a hardness between 29 and 33 GPa, and electrical resistivities of 141-254 mu Omega cm. They also exhibited a minimum in the optical reflectance, similar to that of TiN, indicating plasmonic properties. The position of this minimum was found to be shifted to smaller wavelengths (272-339 nm) compared to a TiN reference (428 nm) and varied with nitrogen content. The tuneability of the optical properties, in combination with the potential to influence the electronic structure through charge transfer between metal atoms point to new interesting routes to design optical materials, and a new class of optical materials based on the concept of multi-component nitrides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据