4.5 Article

Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Spike mutation D614G alters SARS-CoV-2 fitness

Jessica A. Plante et al.

Summary: The D614G substitution in the SARS-CoV-2 spike protein enhances viral replication and infectivity in human lung epithelial cells, primary airway tissues, and hamsters. This variant may increase transmission in the upper respiratory tract and doesn't seem to significantly reduce vaccine efficacy. Further research on therapeutic antibodies targeting the circulating G614 virus is recommended.

NATURE (2021)

Article Medicine, General & Internal

Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

Merryn Voysey et al.

Summary: The ChAdOx1 nCoV-19 vaccine has been shown to have an acceptable safety profile and effectiveness against symptomatic COVID-19, with higher efficacy observed in the group that received a low dose followed by a standard dose.

LANCET (2021)

Article Microbiology

Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies

Allison J. Greaney et al.

Summary: The evolution of SARS-CoV-2 may impact the recognition of the virus by human antibody-mediated immunity, with mutations affecting antibody binding varying significantly among individuals and within the same individual over time. Despite this variability, mutations that greatly reduce antibody binding usually occur at specific sites in the RBD, with E484 being the most crucial. These findings can inform surveillance efforts for SARS-CoV-2 evolution in the future.

CELL HOST & MICROBE (2021)

Letter Medicine, General & Internal

Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine

Kai Wu et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Biochemistry & Molecular Biology

SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies

Markus Hoffmann et al.

Summary: The emerging SARS-CoV-2 variants may exhibit resistance to existing neutralizing antibodies and treatments, which could have significant implications for pandemic containment efforts.
Article Biochemistry & Molecular Biology

Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant

Xianding Deng et al.

Summary: A new SARS-CoV-2 variant named B.1.427/B.1.429 was identified in California, with increased transmissibility and carrying three mutations in spike protein, including L452R substitution. The variant emerged in May 2020 and became predominant in sequenced cases from September 2020 to January 2021. In vivo viral shedding was increased and antibody neutralization decreased, calling for further investigation.
Article Medicine, General & Internal

Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial

Katherine R. W. Emary et al.

Summary: A post-hoc analysis was conducted on the efficacy of the ChAdOx1 nCoV-19 vaccine against the B.1.1.7 variant of SARS-CoV-2 in the UK. The vaccine showed reduced neutralisation activity against the B.1.1.7 variant in vitro, but still demonstrated efficacy against the B.1.1.7 variant of the virus.

LANCET (2021)

Article Medicine, General & Internal

Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant

V. Shinde et al.

Summary: The NVX-CoV2373 vaccine showed efficacy in preventing Covid-19, with higher vaccine efficacy observed among HIV-negative participants. Most infections were caused by the B.1.351 variant.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Immunology

mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates

Kizzmekia S. Corbett et al.

Summary: The mRNA-1273 vaccine from Moderna in a two-dose regimen provides strong protection against major variants of concern, particularly the B.1.351 variant. Higher neutralizing antibody responses and reduced viral replication in the upper and lower airways were observed after two doses, highlighting the importance of the full vaccine regimen for effective immunity.

NATURE IMMUNOLOGY (2021)

Article Biochemistry & Molecular Biology

Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals

Talia Kustin et al.

Summary: Breakthrough SARS-CoV-2 infections post-vaccination may be caused by B.1.1.7 or B.1.351 variants, indicating the importance of robust vaccination. Reduced vaccine effectiveness against these variants was observed in the study, highlighting the need for continued surveillance and enhanced vaccination efforts.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis

Angela Choi et al.

Summary: The study demonstrates that both the mRNA-1273 COVID-19 vaccine and its variant-modified booster doses are safe and effective in improving neutralizing antibody titers against various virus variants.

NATURE MEDICINE (2021)

Article Medicine, General & Internal

Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months

S. J. Thomas et al.

Summary: BNT162b2 vaccine remains highly effective and safe over the course of 6 months post-vaccination, with efficacy rates ranging from 86% to 100% across different demographics and risk factors for Covid-19. The vaccine also shows a high efficacy against severe disease, with particularly promising results observed in South Africa against the B.1.351 variant.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Microbiology

B.1.526 SARS-CoV-2 Variants Identified in New York City are Neutralized by Vaccine-Elicited and Therapeutic Monoclonal Antibodies

Hao Zhou et al.

Summary: A new SARS-CoV-2 variant B.1.526 has been identified in New York City and is spreading rapidly, but current evidence suggests that vaccine-elicited antibodies and Regeneron therapeutic monoclonal antibodies remain effective in combating the B.1.526 variant.
Article Microbiology

Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes

Takuya Tada et al.

Summary: Convalescent-phase sera and antibodies elicited by Pfizer BNT162b2 vaccination can still neutralize several SARS-CoV-2 variants effectively, while Regeneron monoclonal antibodies may be less effective against certain variants, suggesting the need for continued surveillance for potential new variants.
Article Multidisciplinary Sciences

A pneumonia outbreak associated with a new coronavirus of probable bat origin

Peng Zhou et al.

NATURE (2020)

Article Multidisciplinary Sciences

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

Daniel Wrapp et al.

SCIENCE (2020)

Article Biochemistry & Molecular Biology

Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2

Qihui Wang et al.

Article Biochemistry & Molecular Biology

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

Alexandra C. Walls et al.

Article Multidisciplinary Sciences

Cell entry mechanisms of SARS-CoV-2

Jian Shang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2020)

Article Multidisciplinary Sciences

Impact of mRNA chemistry and manufacturing process on innate immune activation

Jennifer Nelson et al.

SCIENCE ADVANCES (2020)

Article Biochemistry & Molecular Biology

Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant

Leonid Yurkovetskiy et al.

Article Multidisciplinary Sciences

SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness

Kizzmekia S. Corbett et al.

NATURE (2020)

Article Medicine, General & Internal

An mRNA Vaccine against SARS-CoV-2-Preliminary Report

L. A. Jackson et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Medicine, General & Internal

Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates

Edward E. Walsh et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Medicine, General & Internal

Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults

E. J. Anderson et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Medicine, General & Internal

Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine

Cheryl Keech et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Medicine, Research & Experimental

Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines

Kimberly J. Hassett et al.

MOLECULAR THERAPY-NUCLEIC ACIDS (2019)

Article Biotechnology & Applied Microbiology

Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses

Annette B. Vogel et al.

MOLECULAR THERAPY (2018)