4.7 Article

Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2016.05.018

关键词

Nitrogen-doped graphene; Double pipe heat exchanger; Pressure drop

资金

  1. High Impact Research Grant [UM.C/HIR/MOHE/ENG/23]
  2. Faculty of Engineering, University of Malaya, Malaysia
  3. Research Chair Grant National Science and Technology Development Agency (NSTDA)
  4. Thailand Research Fund (TRF)
  5. National Research University Project (NRU)

向作者/读者索取更多资源

Nitrogen-doped graphene (NDG) nanofluids are prepared using a two-step method in an aqueous solution of 0.025 wt.% Triton X-100 as a surfactant with various nanosheets at several concentrations (0.01, 0.02, 0.04, 0.06 wt.%). This paper reports results of experiments on thermal conductivity, specific heat capacity, and viscosity of the NDG nanofluids, as well as their convective heat transfer behavior flowing in a double-pipe heat exchanger. To assess the thermal properties, we used various water-based nanofluids as coolants to analyze the total heat transfer coefficient, convective heat transfer coefficient, the percentage of wall temperature reduction, pressure drop, and pumping power in a counter-flow double-pipe heat exchanger. A novel MATLAB code carried out the calculations for Reynolds numbers between 5000 and 15,000 (turbulent flow) and nanosheet weight percentages between 0.00% and 0.06%. An increase in Reynolds number or the percentage of nanomaterial could perhaps enhance the heat transfer of the working fluid. As an example, using 0.06 wt.% nanomaterial in the base fluid led to 15.86% enhancement of the convective heat transfer coefficient in comparison with water. Nonetheless, the penalty in terms of the rise in the pumping power was rather small. For a particular material, increasing Reynolds number or nanomaterial weight percentage would augment pumping power. Power consumption, heat removal, and heat transfer rate were greater for nanofluids than for water in all investigated cases, for a particular pumping power. The average increase in heat transfer coefficient was nearly 16.2%. As a result, choosing NDG/water as the working fluid can improve the performance of double-pipe heat exchangers. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据