4.7 Article

Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2016.06.003

关键词

Thermal conductivity; Artificial neural network; Nanofluid; Graphene oxide; Modeling

向作者/读者索取更多资源

In this research study, the thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid is studied in different temperatures and weight fractions using artificial neural network (ANN) and experimental data. For the purpose of training the ANN, the thermal conductivity of nanofluid is measured in temperatures between 25 and 50 degrees C and weight fractions equal to 0.001, 0.005, 0.015 and 0.045. For the purpose of evaluating the accuracy of the proposed model by ANN, root mean square error (RMSE), R-2 and also mean absolute percentage error (MAPE) are utilized. The best ANN model has two hidden layers and one output layer and also utilizes tansig, logsig and pureline functions and the number of neurons is 4-8-1 in the mentioned layers respectively. The inputs of the ANN model are weight fraction and nanofluid temperature and the output of the network is the thermal conductivity of the nanofluid. The results indicate that the proposed model by ANN can precisely predict the thermal conductivity of the nanofluid. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据