4.6 Article

The guardians of germ cells; Sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells

期刊

THERIOGENOLOGY
卷 173, 期 -, 页码 112-122

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2021.08.001

关键词

Spermatogonial stem cells; Sertoli cells; Exosomes; Electromagnetic field; Oxidative stress; Apoptosis

向作者/读者索取更多资源

Studies have shown the potential detrimental effect of electromagnetic fields on spermatogonial stem cells and spermatogenesis. Sertoli-derived exosomes demonstrate a therapeutic effect on EMF-exposed SSCs by regulating oxidative stress and significantly improving cell changes.
Nowadays, prolonged exposure to electromagnetic fields (EMF) has raised public concern about the detrimental potential of EMF on spermatogonial stem cells (SSCs) and spermatogenesis. Recent studies introduced the fundamental role of Sertoli cell paracrine signaling in the regulation of SSCs maintenance and differentiation in fertility preservation. Thus we investigated the therapeutic effect of Sertoli-derived exosomes (Sertoli-EXOs) as powerful paracrine mediators in SSCs subjected to EMF and its underlying mechanisms. SSCs and Sertoli cells were isolated from neonate mice testis, and identified by their specific markers. Then SSCs were exposed to 50 Hz EMF with intensity of 2.5 mT (1 h for 5 days) and supplemented with exosomes that were isolated from pre-pubertal Sertoli cells. Sertoli-EXOs were characterized and the uptake was observed by PKH26 labeling. The cell viability, colonization efficiency, reactive oxygen species (ROS) balance, cell cycle arrest and apoptosis induction were then analysed. SSCs were confirmed by immunocytochemistry (Oct4, Plzf) and Sertoli cells were identified through Sox9 and vimentin expression by immunocytochemistry and Real-time PCR (qRT-PCR), respectively. Our results demonstrated the detrimental effect of EMF via ROS accumulation that reduced the expression of catalase antioxidant, cell viability and colonization of SSCs. Also, AO/PI and flow cytometry analysis demonstrated the elevation of apoptosis in SSCs exposed to EMF in comparison with control. qRT-PCR data confirmed the up-regulation of apoptotic gene (Caspase-3) and down-regulation of SSCs specific gene (GFRa1). Consequently, the administration of Sertoli-EXOs exerted ameliorative effect on SSCs and significantly improved these changes through the regulation of oxidative stress. These findings suggest that Sertoli-EXOs have positive impact on SSCs exposed to EMF and can be useful in further investigation of Sertoli-EXOs as a novel therapeutic agent which may recover the deregulated SSCs microenvironment and spermatogenesis after exposure to EMF. (C) 2021 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据