4.7 Article

Use of machine learning for automatic Rockwell adhesion test classification based on descriptive and quantitative features

期刊

SURFACE & COATINGS TECHNOLOGY
卷 427, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2021.127762

关键词

Convolutional neural networks; Rockwell C indentation test; Thin-film hard coatings; Adhesion classification; Machine learning

资金

  1. German Federal Ministry for Economic Affairs and Energy within project Auros [FKZ 03TNH023A]

向作者/读者索取更多资源

This paper introduces a novel method for fine-scale thin-film hard coating adhesion classification by developing a set of features for standard parametrization. Research shows that these features are suitable for parametrizing standard's classes, and highlights that ISO standard requires both delamination and cracking features, whereas DIN requires only delamination.
Currently, thin-film coating adhesion classification is done manually guided by two standards, DIN 4856 and ISO 26443. Both standards provide classification guidance based on set of schematic illustrations. As such the interpretation of these standards is both prone to human error and lacks clear class parametrization, which would be necessary for enabling automatic adhesion classification at a finer resolution. In this paper we introduce a set of hand-crafted features used for the parametrization of the two thin-film hard coating adhesion classification standards, as well as a pipeline for automatic fine resolution adhesion classification. The developed features resemble key characteristics used by experts in the classification process, describing the properties of either delamination or cracking within the sample. Additionally, we explain the necessity for a revised approach to thin-film hard coating adhesion classification, specific requirements that the standard class parametrization process has to fulfill and the steps we have taken in tackling these challenges. The set of proposed features was used to train two different regression models whose results were further used for extensive evaluation of both feature applicability and model performance. The analyses show that the features are suitable for parametrizing standard's classes and highlight that ISO standard requires both delamination and cracking features, whereas DIN requires only delamination. This work introduces a novel method for fine scale thin-film hard coating adhesion classification which has not been available so far. Furthermore, the proposed features introduce a solid base for the definition of a future adhesion classification standard providing class parametrization necessary for automatic fine scale adhesion evaluation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据