4.5 Article

One-phonon resonant Raman scattering in a semiconductor nanowire in presence of an external homogeneous electric field

期刊

SUPERLATTICES AND MICROSTRUCTURES
卷 158, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.spmi.2021.107027

关键词

Electron states; Raman scattering; Nanowire; Electron-phonon interaction

向作者/读者索取更多资源

In this study, a theory of one-phonon resonant Raman scattering model for semiconductor nanowires with cylindrical symmetry was developed, considering the effects of an external electric field. The mathematical expressions for Raman scattering differential cross section and efficiency were obtained, showing an increase in Raman efficiency and the appearance of singularities in the Raman spectra due to the presence of the electric field.
In this work, a theory of one-phonon resonant Raman scattering model for a cylindrical symmetry semiconductor nanowire long enough to be considered infinite in the presence of a homogeneous external electric field in transversal direction to the axis of the nanowire was developed. We considered T = 0K and a nanowire with infinite potential barrier. Moreover, parabolic bands have been assumed; the conduction band being completely empty, and a completely full valence band. Thus, the mathematical expressions of the Raman scattering differential cross section and the Raman efficiency have been obtained. In the case of electron-phonon interaction, the freestanding wire model was used. For the calculation of the electron states a model taking into account the conditions imposed by the electric field was used, which was assumed as valid for weak fields regarding confinement. To illustrate the results, the nanowire made of GaAs with a zinc-blende-type structure was considered. It was found that the presence of the electric field caused an increase in Raman efficiency. In addition, it was observed that the electric field caused the appearance of singularities in the Raman spectra due to the breaking of the selection rules for the creation and annihilation of the electron-hole pair, and the emission of non-longitudinal optical phonons was also verified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据