4.5 Article

Effect of laser energy on the properties of neodymium-doped indium zinc oxide thin films deposited by pulsed laser deposition

期刊

SUPERLATTICES AND MICROSTRUCTURES
卷 160, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.spmi.2021.107059

关键词

Laser energy; Pulsed laser deposition; Neodymium-doped indium-zinc-oxide

向作者/读者索取更多资源

Neodymium (Nd) doped indium-zinc-oxide (NIZO) is a material with high mobility and great potential in transparent electronic devices. NIZO thin films were prepared by pulsed laser deposition (PLD) method at different laser energies, leading to a transition from amorphous to amorphous/crystalline state in the films. The carrier mobility reaches the highest value at 250 mJ, but decreases with higher laser energy inputs.
The neodymium (Nd) doped indium-zinc-oxide (NIZO) is a material with high mobility and great potential in transparent electronic devices. NIZO thin films were prepared by pulsed laser deposition (PLD) at 250, 350, 450, and 550 mJ/pulse laser energy, respectively. With the increase of laser energy, the films gradually change from an amorphous to an amorphous/crystalline state and the In2O3 crystals have preferential growth in the (123) plane. The average transmittance of the film is higher than 80% in the visible range. When the laser energy is 250 mJ, the carrier mobility has the highest value of 14.43 cm(2) V-1 s(-1), and it decreases with the increase of laser energy. The possible reason for this phenomenon is given by electronic structure and crystallization. Based on the content of defect states and the emitted particle number, the carrier concentration of the films is analyzed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据