4.5 Article

Thin-shell approach for modeling superconducting tapes in the H-φ finite-element formulation

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6668/ac3f9e

关键词

finite-element method; high-temperature superconductors; thin-shell approach; transient analysis

资金

  1. Coordination for the Improvement of Higher Education Personnel (CAPES)Brazil [001]
  2. Fonds de Recherche du Quebec-Nature et Technologies (FRQNT)

向作者/读者索取更多资源

This paper presents a novel finite-element approach for electromagnetic modeling of superconducting coated conductors with transport currents. By combining a thin-shell method with the H-phi formulation, the computational burden and meshing difficulties associated with these conductors are reduced. The proposed model is shown to be promising for large-scale superconducting applications due to its reduction in computational cost without compromising accuracy.
This paper presents a novel finite-element (FE) approach for the electromagnetic modeling of superconducting coated conductors with transport currents. We combine a thin-shell (TS) method to the H-phi-formulation to avoid the meshing difficulties related to the high aspect ratio of these conductors and reduce the computational burden in simulations. The interface conditions in the TS method are defined using an auxiliary 1-D FE discretization of N elements along the thinnest dimension of the conductor. This procedure permits the approximation of the superconductor's nonlinearities inside the TS in a time-transient analysis. Four application examples of increasing complexity are discussed: (1) single coated conductor, (2) two closely packed conductors carrying anti-parallel currents, (3) a stack of 20 superconducting tapes and (4) a full representation of a high-temperature superconducting tape comprising a stack of thin films. In all these examples, the profiles of both the tangential and normal components of the magnetic field show good agreement with a reference solution obtained with the standard 2-D H-phi-formulation. Results are also compared with the widely used T-A-formulation. This formulation is shown to be dual to the TS model with a single FE (N = 1) in the auxiliary 1-D systems. The increase of N in the TS model is shown to be advantageous at small inter-tape separation and low transport current since it allows the tangential components of the magnetic field to penetrate the thin region. The reduction in computational cost without compromising accuracy makes the proposed model promising for the simulation of large-scale superconducting applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据