4.6 Review

The Effects of Trunk Muscle Training on Physical Fitness and Sport-Specific Performance in Young and Adult Athletes: A Systematic Review and Meta-Analysis

期刊

SPORTS MEDICINE
卷 52, 期 7, 页码 1599-1622

出版社

ADIS INT LTD
DOI: 10.1007/s40279-021-01637-0

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

This study analyzed the effects of trunk muscle training (TMT) on physical fitness and sport-specific performance in young and adult athletes. The results showed significant effects of TMT on various measures, with factors such as age and number of training sessions influencing the effectiveness of TMT.
Background The role of trunk muscle training (TMT) for physical fitness (e.g., muscle power) and sport-specific performance measures (e.g., swimming time) in athletic populations has been extensively examined over the last decades. However, a recent systematic review and meta-analysis on the effects of TMT on measures of physical fitness and sport-specific performance in young and adult athletes is lacking. Objective To aggregate the effects of TMT on measures of physical fitness and sport-specific performance in young and adult athletes and identify potential subject-related moderator variables (e.g., age, sex, expertise level) and training-related programming parameters (e.g., frequency, study length, session duration, and number of training sessions) for TMT effects. Data Sources A systematic literature search was conducted with PubMed, Web of Science, and SPORTDiscus, with no date restrictions, up to June 2021. Study Eligibility Criteria Only controlled trials with baseline and follow-up measures were included if they examined the effects of TMT on at least one measure of physical fitness (e.g., maximal muscle strength, change-of-direction speed (CODS)/agility, linear sprint speed) and sport-specific performance (e.g., throwing velocity, swimming time) in young or adult competitive athletes at a regional, national, or international level. The expertise level was classified as either elite (competing at national and/or international level) or regional (i.e., recreational and sub-elite). Study Appraisal and Synthesis Methods The methodological quality of TMT studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. A random-effects model was used to calculate weighted standardized mean differences (SMDs) between intervention and active control groups. Additionally, univariate sub-group analyses were independently computed for subject-related moderator variables and training-related programming parameters. Results Overall, 31 studies with 693 participants aged 11-37 years were eligible for inclusion. The methodological quality of the included studies was 5 on the PEDro scale. In terms of physical fitness, there were significant, small-to-large effects of TMT on maximal muscle strength (SMD = 0.39), local muscular endurance (SMD = 1.29), lower limb muscle power (SMD = 0.30), linear sprint speed (SMD = 0.66), and CODS/agility (SMD = 0.70). Furthermore, a significant and moderate TMT effect was found for sport-specific performance (SMD = 0.64). Univariate sub-group analyses for subject-related moderator variables revealed significant effects of age on CODS/agility (p = 0.04), with significantly large effects for children (SMD = 1.53, p = 0.002). Further, there was a significant effect of number of training sessions on muscle power and linear sprint speed (p <= 0.03), with significant, small-to-large effects of TMT for > 18 sessions compared to <= 18 sessions (0.45 <= SMD <= 0.84, p <= 0.003). Additionally, session duration significantly modulated TMT effects on linear sprint speed, CODS/agility, and sport-specific performance (p <= 0.05). TMT with session durations <= 30 min resulted in significant, large effects on linear sprint speed and CODS/agility (1.66 <= SMD <= 2.42, p <= 0.002), whereas session durations > 30 min resulted in significant, large effects on sport-specific performance (SMD = 1.22, p = 0.008). Conclusions Our findings indicate that TMT is an effective means to improve selected measures of physical fitness and sport-specific performance in young and adult athletes. Independent sub-group analyses suggest that TMT has the potential to improve CODS/agility, but only in children. Additionally, more (> 18) and/or shorter duration (<= 30 min) TMT sessions appear to be more effective for improving lower limb muscle power, linear sprint speed, and CODS/agility in young or adult competitive athletes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据