4.7 Article

Species-level identity of Pisolithus influences soil phosphorus availability for host plants and is moderated by nitrogen status, but not CO2

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 165, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2021.108520

关键词

Ectomycorrhizal symbiosis; Phosphorus cycling; Bacterial community; Anthropogenic change

资金

  1. Western Sydney University [Australian Government Research Training Program Scholarship]
  2. Australian Research Council [DP190102254]

向作者/读者索取更多资源

The study found that different species of ECM fungi have specific effects on the amount of plant-available phosphorus in the soil, as well as affecting the abundance of P cycling genes in the soil bacterial community. Nitrogen and CO2 levels also impact these P cycling processes.
Trees are dependent on the activity of soil microorganisms, including mutualistic ectomycorrhizal (ECM) fungi and soil-dwelling bacteria, for access to phosphorus (P). While P is a key limiting nutrient in temperate and other forest ecosystems, our understanding of the contributions of ECM fungi to plant P nutrition and cycling are unclear. Further complicating our understanding of these processes are the combined effects of fungal species and future climate scenarios and soil nutrient availability.In this study we characterised how the ECM fungi Pisolithus albus and Pisolithus microcarpus influenced the amount of plant-available P in soils and plant P content of Eucalyptus grandis. We explored how these fungi influence P cycling by studying their relative P-solubilising and P-mineralising abilities and examining their impact on P cycling gene abundance in the soil bacterial community. These were investigated under different levels of nitrogen addition and atmospheric CO2 to understand how these processes may be impacted by future anthropogenic and climactic change. While inoculation with either P. albus or P. microcarpus resulted in an increase in plant-available P in soil, the amount of plant-available P mobilised was species-specific. This observation was supported by differences in the in vitro P-mobilising abilities of the two fungi. P. albus and P. microcarpus also favoured bacterial communities characterised by a greater abundance of glucose dehydrogenase gene copies for inorganic P solubilisation, complementing the strengths of the ECM fungi in organic P mineralisation and suggesting a distinction in the roles of ECM fungi and bacteria in P cycling. Furthermore, both nitrogen and CO2 levels impacted these P cycling outcomes, often in a species-specific manner. Our findings expand the current understanding of P cycling between forest trees, ECM fungi and soil bacteria, and have important implications for estimations of future anthropogenic impacts on forest ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据