4.6 Article

Shear-induced migration of confined flexible fibers

期刊

SOFT MATTER
卷 18, 期 3, 页码 514-525

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sm01256h

关键词

-

资金

  1. NSF [CMMI-1661672]
  2. Princeton University through a Charlotte Elizabeth Procter Fellowship
  3. Hong Kong RGC Research Impact Fund [R7072-18]
  4. Princeton Center for Complex Materials (PCCM)
  5. National Science Foundation (NSF)-MRSEC program [DMR-2011750]

向作者/读者索取更多资源

The experimental study investigates the shear-induced migration of flexible fibers in suspensions confined between two parallel plates. The migration of fibers is found to be related to their flexibility and the shear stress, with softer fibers and stronger shear stresses leading to faster migration. As the dimensionless parameter ?(eff) increases, fibers tend to align in the flow direction and exhibit more bending behavior towards the center plane.
We report an experimental study of the shear-induced migration of flexible fibers in suspensions confined between two parallel plates. Non-Brownian fiber suspensions are imaged in a rheo-microscopy setup, where the top and the bottom plates counter-rotate and create a Couette flow. Initially, the fibers are near the bottom plate due to sedimentation. Under shear, the fibers move with the flow and migrate towards the center plane between the two walls. Statistical properties of the fibers, such as the mean values of the positions, orientations, and end-to-end lengths of the fibers, are used to characterize the behaviors of the fibers. A dimensionless parameter ?(eff), which compares the hydrodynamic shear stress and the fiber stiffness, is used to analyze the effective flexibility of the fibers. The observations show that the fibers that are more likely to bend exhibit faster migration. As ?(eff) increases (softer fibers and stronger shear stresses), the fibers tend to align in the flow direction and the motions of the fibers transition from tumbling and rolling to bending. The bending fibers drift away from the walls to the center plane. Further increasing ?(eff) leads to more coiled fiber shapes, and the bending is more frequent and with larger magnitudes, which leads to more rapid migration towards the center. Different behaviors of the fibers are quantified with ?(eff), and the structures and the dynamics of the fibers are correlated with the migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据