4.8 Article

Oxygen Reduction Activity of B←N-Containing Organic Molecule Affected by Asymmetric Regulation

期刊

SMALL
卷 18, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202105524

关键词

asymmetry; charge distribution; electrocatalysts; electronic structure; organic molecules

资金

  1. National Natural Science Foundation of China [22075157, 21805148]
  2. Taishan Scholars Program [tsqn201909090]
  3. Natural Science Foundation of Shandong Province, China [ZR2019BEM016]
  4. Open Research Fund of State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University [ZKT06, GZRC202008]
  5. Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences [2020-02]
  6. Test Center of Tangshan Graphene Application Technology Public Service Platform

向作者/读者索取更多资源

Organic molecular catalysts with well-controlled molecular structures have attracted attention for catalytic chemistry. By asymmetrically introducing S-heterocycles, the electronic distribution of active sites is regulated, leading to improved oxygen reduction performance. Asymmetric structure of as-BNT alters the catalytic active sites and changes the kinetics of catalytic reaction due to non-uniform charge distribution and increased dipole moment.
Organic molecular catalysts have received great attention as they have the merits of well-controlled molecular structures for the development of catalytic chemistry. Herein, the electronic distribution of active sites is regulated by asymmetrically introducing S-heterocycle on one side of the molecular core. As a result, the asymmetric as-PYT and as-BNT show higher oxygen reduction performance than their symmetric counterparts without (s-PY, s-PY2T) or with two S-heterocycle units (s-BN, s-BN2T). Density functional theory calculations reveal that the carbon atoms (site-12) at symmetric s-BN and s-BN2T are the catalytic active sites, while for asymmetric as-BNT, it has changed to amino-N atom (site-14). Due to the non-uniform charge distribution and increased dipole moment of as-BNT caused by asymmetric molecular configuration, the kinetics of catalytic reaction has changed significantly. The catalytically active sites of specific N atoms are further verified experimentally and theoretically by using sterically hindered phenyl groups. This work provides a simple but efficient method to design metal-free oxygen reduction electrocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据