4.8 Review

Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy

期刊

SMALL
卷 18, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202104567

关键词

cancer therapies; in vivo imaging; near-infrared-II windows; quantum dots

资金

  1. National Key Research and Development Program of China [2019YFA0210500]
  2. National Natural Science Foundation of China [21877102, 21977054, 91859123, 91953107]

向作者/读者索取更多资源

NIR-II imaging breakthrough imaging limitations in deep tissues, while NIR-II quantum dots exhibit excellent optical properties and have become promising fluorescent biomarkers in in vivo fluorescence imaging.
In vivo fluorescence imaging can perform real-time, noninvasive, and high spatiotemporal resolution imaging to accurately obtain the dynamic biological information in vivo, which plays significant roles in the early diagnosis and treatment of cancer. However, traditional in vivo fluorescence imaging usually operates in the visible and near-infrared (NIR)-I windows, which are severely interfered by the strong tissue absorption, tissue scattering, and autofluorescence. The emergence of NIR-II imaging at 1000-1700 nm significantly breaks through the imaging limitations in deep tissues, due to less tissue scattering and absorption. Benefiting from the outstanding optical properties of NIR-II quantum dots (QDs), such as high brightness and good photostability, in vivo fluorescence imaging exhibits excellent temporal-spatial resolution and large penetration depth, and QDs have become a kind of promising fluorescent biomarkers in the field of in vivo fluorescence imaging. Herein, the authors review NIR-II QDs from preparation to modification, and summarize recent applications of NIR-II QDs, including in vivo imaging and imaging-guided therapies. Finally, they discuss the special concerns when NIR-II QDs are shifted from in vivo imaging applications to further in-depth applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据