4.8 Article

Handheld Microfluidic Filtration Platform Enables Rapid, Low-Cost, and Robust Self-Testing of SARS-CoV-2 Virus

期刊

SMALL
卷 17, 期 52, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202104009

关键词

biomedical engineering; COVID-19 diagnostics; microassays; microfluidics; point of care

资金

  1. Rapid Acceleration of Diagnostics (RADx) program from National Institutes of Health [RADx 3343, RADx 7748]
  2. Boston Molecules Inc.

向作者/读者索取更多资源

The novel microfluidic test kit combines ultra-high throughput hydrodynamic filtration and sandwich immunoassay techniques for rapid separation and enrichment of antigens, demonstrating high detection sensitivity, low cost, and suitability for areas with inadequate medical infrastructure and limited laboratory resources.
Here, a novel microfluidic test kit combining ultrahigh throughput hydrodynamic filtration and sandwich immunoassay is reported. Specifically, nano and microbeads coated with two different, noncompetitive antibodies, are used to capture the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) proteins simultaneously, forming larger complexes. Microfluidic filtration discards free nanobeads but retains antigen-bridged complexes in the observation zone, where a display of red color indicates the presence of antigen in the sample. This testing platform exhibits high throughput separation (<30 s) and enrichment of antigen that exceeds the traditional lateral flow assays or microfluidic assays, with a low limit of detection (LoD) < 100 copies mL(-1). In two rounds of clinical trials conducted in December 2020 and August 2021, the assays demonstrate high sensitivities of 95.4% and 100%, respectively, which proves this microfluidic test kit is capable of detecting SARS-CoV-2 virus variants evolved over significant periods of time. Furthermore, the mass-produced chip can be fabricated at a cost of $0.98/test and the robust design allows the chip to be reused for over 50 times. All of these features make the microfluidic test kit particularly suitable for areas with inadequate medical infrastructure and a shortage of laboratory resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据