4.8 Review

Perspectives on Working Voltage of Aqueous Supercapacitors

期刊

SMALL
卷 18, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202106360

关键词

aqueous supercapacitors; electrolytes; energy density; voltage window

资金

  1. National Natural Science Foundation of China [51972260, 52072295]
  2. International Cooperation Project of Shaanxi Province [2021KWZ-10]
  3. Fundamental Research Funds for the Central University [xzy022020046]
  4. 111 Project of China [B14040]

向作者/读者索取更多资源

This review summarizes key strategies and mechanisms for achieving wide working voltage in aqueous supercapacitors, including electrode optimization, electrolyte optimization, and diaphragm optimization. Various effective strategies, such as electrode functionalization, heteroatom doping, and neutral electrolyte, have been proposed to extend the actual voltage window.
Aqueous supercapacitors have the superiorities of high safety, environmental friendliness, inexpensive, etc. High energy density supercapacitors are not conducive to manufacturing due to the limitation of water thermodynamic decomposition potential, resulting in a narrow working voltage window. To address such challenges, a great endeavor has started to investigate high voltage aqueous supercapacitors as well as making some progress. This review summarizes key strategies regarding the realization of wide working voltage of aqueous supercapacitors and analyzes the involved mechanism, including the optimization of electrodes, electrolytes, diaphragms, and supercapacitor structures. From the perspective of extending the theoretical voltage window, electrode functionalization, heteroatom doping, neutral electrolyte, water-in-salt electrolyte, introducing redox mediators into electrolyte, and designing asymmetric structure are effective strategies for achieving this goal. Further, the actual voltage window can be maximized by optimizing the electrode mass ratio, adjusting potential of zero voltage, and electrode functionalization. The challenge and future of expanding working voltage of aqueous supercapacitors are further discussed. Importantly, this review provides inspiration for the development of supercapacitors with high energy density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据