4.7 Article

MOF-based MMMs breaking the upper bounds of polymers for a large variety of gas separations

期刊

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2021.119811

关键词

Mixed matrix membrane; Upper bound; Permeability; Selectivity; Gas separation

资金

  1. ERC
  2. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-2017-Starting Grant) [756489-COSMOS]

向作者/读者索取更多资源

This research evaluated the performance of nearly 180,000 different MOF/polymer MMMs in 11 different gas separations, finding that many of them exceeded the upper bounds due to high gas permeability and selectivity, and showed that using MOFs as fillers significantly improved the gas permeability of polymers.
Mixed matrix membranes (MMMs) are a strong alternative to the conventional polymeric membranes which suffer from a trade-off between selectivity and gas permeability. Considering the existence of a large number of metal-organic frameworks (MOFs) and polymers, computational screening of MOF/polymer MMMs is strongly desired to explore their upper limits in various gas separation processes before experimental efforts. In this work, we computed permeability of CO2, CH4, N-2, O-2, H-2, and He gases in 5599 metal organic frameworks (MOFs) using atomically-detailed simulations and then assessed performances of >180,000 different MOF/polymer MMMs for 11 different gas separations He/H-2, He/N-2, He/CH4, N-2/CH4, H-2/N-2, H-2/CH4 O-2/N-2, CO2/N-2, CO2/CH4, H-2/CO2, He/CO2 . Our results revealed that many MOF/polymer MMMs exceed the upper bounds due to their high gas permeability and/or selectivity. The impact of MOFs on the separation performances of polymers was examined to provide guidelines for the best MOF-polymer pairing for a variety of gas separations. Data showed that using MOFs as fillers significantly improves the permeability of CO2, CH4, N-2, O-2, H-2, and He gases in 41 different types of polymers without changing their selectivities. Many MOFs offer a great opportunity for MMM applications by improving both the permeability and selectivity of polymers such as of Teflon AF-2400 for N-2/CH4, PTMSP-co(95/5) for H-2/CH4, PTMSDPA for O-2/N-2 and PTMSP for CO2/CH4 separations. The best MOF fillers leading to MMMs with exceptional selectivities were found to have narrow pores and low porosities. These results will contribute to directing the experimental efforts to the best MOF/polymer MMM materials for numerous industrially important gas separation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据