4.7 Article

Tunable oxygen vacancies of cobalt oxides for efficient gas sensing application

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 350, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2021.130860

关键词

Cobalt oxides; Gas sensing; P-type metal oxide; Defect engineering; Porous structure; Triethylamine detection

资金

  1. University of Jinan
  2. Shandong Shenna Smart Advanced Materials Co., Ltd.

向作者/读者索取更多资源

This study successfully detected triethylamine (TEA) using newly generated p-type Co3O4 nanosheets with rich oxygen vacancies, showing high sensitivity, excellent selectivity, and stability at an operating temperature of 200 degrees Celsius. By controlling annealing temperature to adjust oxygen vacancies and particle morphologies, a new approach for designing p-type metal oxide semiconductor nanomaterials for gas sensing applications was proposed.
It is a big challenge to apply p-type metal oxide semiconductors for gas sensing. This study presents an efficient and rapid approach to detect triethylamine (TEA) by newly generated p-type Co3O4 nanosheets with rich oxygen vacancies. These porous Co3O4 nanosheets were synthesized via a simple but efficient hydrothermal method, followed by annealing process. The defect concentration, highly related to the morphology of the obtained sensing materials, was readily adjustable by controlling annealing temperature. It was found that the presence of abundant oxygen vacancies and the large specific surface area have synergistically promoted gas sensing performance using Co3O4 nanosheets in detecting TEA with a sensitive response (Sg/a = 124.36 for 100 ppm TEA) at an operating temperature (200 degrees C). Furthermore, the Co3O4 nanosheets have exhibited excellent selectivity, repeatability and stability, probably attributed to the formation of mesoporous structures and appropriate oxygen vacancy concentrations. This work may offer an effective path for designing p-type metal oxide semiconductor nanomaterials for gas sensing applications by controlling oxygen vacancies and particle morphologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据