4.6 Article

Upper Limb Movement Measurement Systems for Cerebral Palsy: A Systematic Literature Review

期刊

SENSORS
卷 21, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/s21237884

关键词

Kinect; kinematics; active range of motion; measurement; upper limb; cerebral palsy

向作者/读者索取更多资源

This paper focuses on identifying techniques for the quantitative assessment of upper limb movements in children with cerebral palsy, utilizing optoelectronic devices, wearable sensors, and low-cost Kinect sensors. Results showed an improvement in motor function and daily tasks in the study population, with optoelectronic devices being the most commonly used. The potential of wearable sensors and Kinect sensors as complementary devices for quantitative evaluation of upper limb movements was evident.
Quantifying the quality of upper limb movements is fundamental to the therapeutic process of patients with cerebral palsy (CP). Several clinical methods are currently available to assess the upper limb range of motion (ROM) in children with CP. This paper focuses on identifying and describing available techniques for the quantitative assessment of the upper limb active range of motion (AROM) and kinematics in children with CP. Following the screening and exclusion of articles that did not meet the selection criteria, we analyzed 14 studies involving objective upper extremity assessments of the AROM and kinematics using optoelectronic devices, wearable sensors, and low-cost Kinect sensors in children with CP aged 4-18 years. An increase in the motor function of the upper extremity and an improvement in most of the daily tasks reviewed were reported. In the population of this study, the potential of wearable sensors and the Kinect sensor natural user interface as complementary devices for the quantitative evaluation of the upper extremity was evident. The Kinect sensor is a clinical assessment tool with a unique markerless motion capture system. Few authors had described the kinematic models and algorithms used to estimate their kinematic analysis in detail. However, the kinematic models in these studies varied from 4 to 10 segments. In addition, few authors had followed the joint assessment recommendations proposed by the International Society of Biomechanics (ISB). This review showed that three-dimensional analysis systems were used primarily for monitoring and evaluating spatiotemporal variables and kinematic parameters of upper limb movements. The results indicated that optoelectronic devices were the most commonly used systems. The joint assessment recommendations proposed by the ISB should be used because they are approved standards for human kinematic assessments. This review was registered in the PROSPERO database (CRD42021257211).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据