4.6 Article

Self-Protected Virtual Sensor Network for Microcontroller Fault Detection

期刊

SENSORS
卷 22, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/s22020454

关键词

Virtual Sensor Network; Digital Twin; Mahalanobis Distance; Neural Network; LSTM; uncertainty estimation; cybersecurity; Industrial Control System

向作者/读者索取更多资源

This paper introduces a method to compare the functional behaviour of electronic hardware units using a virtual sensor network and a neural network. The method successfully identifies and describes the unexpected behaviour of the test device.
This paper introduces a procedure to compare the functional behaviour of individual units of electronic hardware of the same type. The primary use case for this method is to estimate the functional integrity of an unknown device unit based on the behaviour of a known and proven reference unit. This method is based on the so-called virtual sensor network (VSN) approach, where the output quantity of a physical sensor measurement is replicated by a virtual model output. In the present study, this approach is extended to model the functional behaviour of electronic hardware by a neural network (NN) with Long-Short-Term-Memory (LSTM) layers to encapsulate potential time-dependence of the signals. The proposed method is illustrated and validated on measurements from a remote-controlled drone, which is operated with two variants of controller hardware: a reference controller unit and a malfunctioning counterpart. It is demonstrated that the presented approach successfully identifies and describes the unexpected behaviour of the test device. In the presented case study, the model outputs a signal sample prediction in 0.14 ms and achieves a reconstruction accuracy of the validation data with a root mean square error (RMSE) below 0.04 relative to the data range. In addition, three self-protection features (multidimensional boundary-check, Mahalanobis distance, auxiliary autoencoder NN) are introduced to gauge the certainty of the VSN model output.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据