4.6 Article

Biometric Physiological Responses from Dairy Cows Measured by Visible Remote Sensing Are Good Predictors of Milk Productivity and Quality through Artificial Intelligence

期刊

SENSORS
卷 21, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/s21206844

关键词

heart rate; respiration rate; abrupt movements; robotic dairy farm; artificial neural networks

资金

  1. Food Fibre Trace Global Pty Ltd. Victoria, Australia

向作者/读者索取更多资源

New and emerging technologies, especially those based on non-invasive video and thermal infrared cameras, were tested on robotic milking facilities to estimate cow's physiological parameters. The results showed high accuracy in predicting various parameters and the models can be easily deployed in conventional dairy farms.
New and emerging technologies, especially those based on non-invasive video and thermal infrared cameras, can be readily tested on robotic milking facilities. In this research, implemented non-invasive computer vision methods to estimate cow's heart rate, respiration rate, and abrupt movements captured using RGB cameras and machine learning modelling to predict eye temperature, milk production and quality are presented. RGB and infrared thermal videos (IRTV) were acquired from cows using a robotic milking facility. Results from 102 different cows with replicates (n = 150) showed that an artificial neural network (ANN) model using only inputs from RGB cameras presented high accuracy (R = 0.96) in predicting eye temperature (& DEG;C), using IRTV as ground truth, daily milk productivity (kg-milk-day(-1)), cow milk productivity (kg-milk-cow(-1)), milk fat (%) and milk protein (%) with no signs of overfitting. The ANN model developed was deployed using an independent 132 cow samples obtained on different days, which also rendered high accuracy and was similar to the model development (R = 0.93). This model can be easily applied using affordable RGB camera systems to obtain all the proposed targets, including eye temperature, which can also be used to model animal welfare and biotic/abiotic stress. Furthermore, these models can be readily deployed in conventional dairy farms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据