4.6 Article

AI-Enabled Framework for Fog Computing Driven E-Healthcare Applications

期刊

SENSORS
卷 21, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/s21238039

关键词

6G; AI; fog computing; e-health; cyber physical system; interoperability; analytic hierarchy process

资金

  1. PIFI, China [2020VBC0002]

向作者/读者索取更多资源

Artificial Intelligence is revolutionizing the sixth generation edge computing in e-healthcare, aiming for cost-effective and efficient healthcare applications. The IoT-driven healthcare system must be smart, interoperable, convergent, and reliable to provide pervasive and cost-effective platforms. Mathematical trade-offs between bandwidth, interoperability, reliability, delay, and energy dissipation are proposed for IoMT-oriented smart healthcare over a 6G platform.
Artificial Intelligence (AI) is the revolutionary paradigm to empower sixth generation (6G) edge computing based e-healthcare for everyone. Thus, this research aims to promote an AI-based cost-effective and efficient healthcare application. The cyber physical system (CPS) is a key player in the internet world where humans and their personal devices such as cell phones, laptops, wearables, etc., facilitate the healthcare environment. The data extracting, examining and monitoring strategies from sensors and actuators in the entire medical landscape are facilitated by cloud-enabled technologies for absorbing and accepting the entire emerging wave of revolution. The efficient and accurate examination of voluminous data from the sensor devices poses restrictions in terms of bandwidth, delay and energy. Due to the heterogeneous nature of the Internet of Medical Things (IoMT), the driven healthcare system must be smart, interoperable, convergent, and reliable to provide pervasive and cost-effective healthcare platforms. Unfortunately, because of higher power consumption and lesser packet delivery rate, achieving interoperable, convergent, and reliable transmission is challenging in connected healthcare. In such a scenario, this paper has fourfold major contributions. The first contribution is the development of a single chip wearable electrocardiogram (ECG) with the support of an analog front end (AFE) chip model (i.e., ADS1292R) for gathering the ECG data to examine the health status of elderly or chronic patients with the IoT-based cyber physical system (CPS). The second proposes a fuzzy-based sustainable, interoperable, and reliable algorithm (FSIRA), which is an intelligent and self-adaptive decision-making approach to prioritize emergency and critical patients in association with the selected parameters for improving healthcare quality at reasonable costs. The third is the proposal of a specific cloud-based architecture for mobile and connected healthcare. The fourth is the identification of the right balance between reliability, packet loss ratio, convergence, latency, interoperability, and throughput to support an adaptive IoMT driven connected healthcare. It is examined and observed that our proposed approaches outperform the conventional techniques by providing high reliability, high convergence, interoperability, and a better foundation to analyze and interpret the accuracy in systems from a medical health aspect. As for the IoMT, an enabled healthcare cloud is the key ingredient on which to focus, as it also faces the big hurdle of less bandwidth, more delay and energy drain. Thus, we propose the mathematical trade-offs between bandwidth, interoperability, reliability, delay, and energy dissipation for IoMT-oriented smart healthcare over a 6G platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据