4.6 Article

Fabrication of AuNPs/MWCNTS/Chitosan Nanocomposite for the Electrochemical Aptasensing of Cadmium in Water

期刊

SENSORS
卷 22, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/s22010105

关键词

cadmium; aptasensor; electrochemical; environment; pollutant

向作者/读者索取更多资源

A label-free electrochemical aptasensor for cadmium detection in water was developed using a nanocomposite combining gold nanoparticles, carbon nanotubes, and chitosan. The biosensor exhibited excellent performances for cadmium detection with high sensitivity, low detection limit, and a wide linear range. It also showed good selectivity against interfering ions.
Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (-0.5 V) with a high sensitivity (1.2 K omega center dot M-1), a detection limit of 0.02 pM and a wide linear range (10(-13)-10(-4) M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据