4.6 Article

Measurement Noise Covariance-Adapting Kalman Filters for Varying Sensor Noise Situations

期刊

SENSORS
卷 21, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/s21248304

关键词

extended Kalman filter; adaptive filtering; disturbed environment; measurement noise covariance; nonlinear estimation

资金

  1. University of Cincinnati

向作者/读者索取更多资源

The study discussed the use of UWB sensors in a positioning system, proposing sequential adaptive EKF and piecewise adaptive EKF as methods for accurate positioning. Results showed that these approaches achieved higher accuracy compared to traditional EKF methods in varying noise situations.
An accurate and reliable positioning system (PS) is a significant topic of research due to its broad range of aerospace applications, such as the localization of autonomous agents in GPS-denied and indoor environments. The PS discussed in this work uses ultra-wide band (UWB) sensors to provide distance measurements. UWB sensors are based on radio frequency technology and offer low power consumption, wide bandwidth, and precise ranging in the presence of nominal environmental noise. However, in practical situations, UWB sensors experience varying measurement noise due to unexpected obstacles in the environment. The localization accuracy is highly dependent on the filtering of such noise, and the extended Kalman filter (EKF) is one of the widely used techniques. In varying noise situations, where the obstacles generate larger measurement noise than nominal levels, EKF cannot offer precise results. Therefore, this work proposes two approaches based on EKF: sequential adaptive EKF and piecewise adaptive EKF. Simulation studies are conducted in static, linear, and nonlinear scenarios, and it is observed that higher accuracy is achieved by applying the proposed approaches as compared to the traditional EKF method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据