4.6 Article

Field Detection of Rhizoctonia Root Rot in Sugar Beet by Near Infrared Spectrometry

期刊

SENSORS
卷 21, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/s21238068

关键词

Rhizoctonia solani; near-infrared spectroscopy; soil-borne pathogen; disease detection; Beta vulgaris

向作者/读者索取更多资源

The study demonstrates the feasibility of using NIRS on sugar beet root pulp to detect and quantify RRCR, providing a helpful tool for assessing Rhizoctonia disease in the field.
Rhizoctonia root and crown rot (RRCR) is an important disease in sugar beet production areas, whose assessment and control are still challenging. Therefore, breeding for resistance is the most practical way to manage it. Although the use of spectroscopy methods has proven to be a useful tool to detect soil-borne pathogens through leaves reflectance, no study has been carried out so far applying near-infrared spectroscopy (NIRS) directly in the beets. We aimed to use NIRS on sugar beet root pulp to detect and quantify RRCR in the field, in parallel to the harvest process. For the construction of the calibration model, mainly beets from the field with natural RRCR infestation were used. To enrich the model, artificially inoculated beets were added. The model was developed based on Partial Least Squares Regression. The optimized model reached a Pearson correlation coefficient (R) of 0.972 and a Ratio of Prediction to Deviation (RPD) of 4.131. The prediction of the independent validation set showed a high correlation coefficient (R = 0.963) and a root mean square error of prediction (RMSEP) of 0.494. These results indicate that NIRS could be a helpful tool in the assessment of Rhizoctonia disease in the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据