4.2 Article

Visualizing mechanical modulation of nanoscale organization of cell-matrix adhesions

期刊

INTEGRATIVE BIOLOGY
卷 8, 期 7, 页码 795-804

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ib00031b

关键词

-

资金

  1. NIH/NCI [F31CA190422, U01-CA202241-01, R01-CA192914-01, U54-CA163155-05]
  2. DOD [W81XWH-13-1-0216]
  3. NSF GRFP [1144247, 1106400]

向作者/读者索取更多资源

The mechanical properties of the extracellular matrix influence cell signaling to regulate key cellular processes, including differentiation, apoptosis, and transformation. Understanding the molecular mechanisms underlying mechanotransduction is contingent upon our ability to visualize the effect of altered matrix properties on the nanoscale organization of proteins involved in this signalling. The development of super-resolution imaging techniques has afforded researchers unprecedented ability to probe the organization and localization of proteins within the cell. However, most of these methods require use of substrates like glass or silicon wafers, which are artificially rigid. In light of a growing body of literature demonstrating the importance of mechanical properties of the extracellular matrix in regulating many aspects of cellular behavior and signaling, we have developed a system that allows scanning angle interference microscopy on a mechanically tunable substrate. We describe its implementation in detail and provide examples of how it may be used to aide investigations into the effect of substrate rigidity on intracellular signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据