4.7 Article

Facile route to implement transformation strengthening in titanium alloys

期刊

SCRIPTA MATERIALIA
卷 208, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2021.114362

关键词

Ti alloys; Alloy design; TRIP/TWIP; Mechanism-driven modelling; Transformation strengthening

资金

  1. EPSRC [EP/L025213/1] Funding Source: UKRI

向作者/读者索取更多资源

This study reported a method to deploy transformation-mediated strengthening in titanium alloys by supervised activation of TRIP and TWIP through mechanism-driven modelling, improving the mechanical properties of materials. By developing new alloys, notable resistance to strain localization was achieved, along with significant strain-hardening effects.
Developing lighter, stronger and more ductile aerospace metallic materials is in demand for energy efficiency strategies. Alloys with twinning-induced plasticity (TWIP) and/or transformation-induced plasticity (TRIP) effects have been exploited to defeat the conflict of strength versus ductility, yet very few if any physically informed methods exist to address the complex interactions between the transitions. Here we report a facile route to deploy transformation-mediated strengthening in Ti alloys, which particularly focuses on the supervised activation of TRIP and TWIP via a mechanism-driven modelling approach. New alloys were comparatively developed and presented notable resistances to strain localisation, but interestingly through distinct mechanical characteristics. Specifically, extraordinary strain-hardening rate (d sigma/d epsilon) with a peak value of 2.4 GPa was achieved in Ti-10Mo-5Nb (wt.%), resulting from the synergetic activation of hierarchical transformations. An efficient model integrating TRIP and TWIP was applied to understand the interplays of the transition mechanisms. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据