4.8 Article

Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits

期刊

SCIENCE TRANSLATIONAL MEDICINE
卷 14, 期 627, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scitranslmed.abi7282

关键词

-

资金

  1. NIH [R21EB024787, R21AR078744]

向作者/读者索取更多资源

A biodegradable piezoelectric poly(l-lactic acid) (PLLA) nanofiber scaffold can act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. With the use of this scaffold and exercise treatment, hyaline-cartilage regeneration and complete healing can be achieved after 1 to 2 months.
More than 32.5 million American adults suffer from osteoarthritis, and current treatments including pain medicines and anti-inflammatory drugs only alleviate symptoms but do not cure the disease. Here, we have demonstrated that a biodegradable piezoelectric poly(l-lactic acid) (PLLA) nanofiber scaffold under applied force or joint load could act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. The PLLA scaffold under applied force or joint load generated a controllable piezoelectric charge, which promoted extracellular protein adsorption, facilitated cell migration or recruitment, induced endogenous TGF-beta via calcium signaling pathway, and improved chondrogenesis and cartilage regeneration both in vitro and in vivo. Rabbits with critical-sized osteochondral defects receiving the piezoelectric scaffold and exercise treatment experienced hyaline-cartilage regeneration and completely healed cartilage with abundant chondrocytes and type II collagen after 1 to 2 months of exercise (2 to 3 months after surgery including 1 month of recovery before exercise), whereas rabbits treated with nonpiezoelectric scaffold and exercise treatment had unfilled defect and limited healing. The approach of combining biodegradable piezoelectric tissue scaffolds with controlled mechanical activation (via physical exercise) may therefore be useful for the treatment of osteoarthritis and is potentially applicable to regenerating other injured tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据