4.7 Article

Impacts of secondary aerosol formation and long range transport on severe haze during the winter of 2017 in the Seoul metropolitan area

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 804, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.149984

关键词

Haze; HR-ToF-AMS; CFA; RTA; Secondary; Inorganic

资金

  1. Korea Institute of Science and Technology (KIST) Institutional Program (Atmospheric Environment Research Program) [2E31291]
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2021R1A2C2004365]

向作者/读者索取更多资源

Seoul experiences severe haze episodes during winter, with nitrate mass fraction increasing and suggesting regional transport contribution to nitrate mass during haze periods. Local emissions or stagnant meteorological conditions were not the main reason for severe haze episodes in Seoul.
Severe haze episodes occur frequently in the Seoul Metropolitan Area (SMA) and throughout East Asian countries, especially during the winter and early spring. We investigated the sources and chemistry of particulate matter (PM) during three winter haze episodes in Seoul that occurred between January 1st and February 10th in 2017 using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and positive matrix factorization (PMF) analysis. The average concentration of sub-micrometer aerosol (PM1 = NR-PM1 (+) black carbon (BC)) was 32.6 mu g/m(3), which was composed of 42% organics, 27% nitrate, 11% sulfate, 13% ammonium and 4% BC by mass. Six distinct sources of organic aerosol (OA) were identified: vehicle emitted hydrocarbon-like OA ( HOA), cooking OA (COA), biomass burning OA (BBOA), and 3 different types of secondary OA (SOA) with varying degrees of oxidation and temporal trends. The nitrate mass fraction increased during the three haze episodes, with nitrate accounting for 27-33% of PM1 mass. Enhanced nitrate concentrations and higher nitrate oxidation ratios (NOR), despite lower enhancement in relative humidity (RH) than the low PM loading period, suggest that regional transport of nitrate contributed to the nitrate mass during the haze periods. Lower HOA and COA concentrations during the high PM loading periods further confirm that local emissions or stagnant meteorological conditions were not the main reason for the severe haze. Residence time analysis (RTA), concentration field analysis (CFA), and column-CFA results from FLEXPART also showed that the measurement period was accompanied by atmospheric transport of nitrate, sulfate, and ammonium from eastern China. Nevertheless, we found that NO2, a precursor of nitrate, was predominantly from local emissions. These findings suggest that nitrate in Seoul is not only locally formed, but also transported from upwind areas. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据