4.7 Article

Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 809, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151115

关键词

Canna indica (L.); Corncobs/wood chips; Domestic wastewater; Eisenia foetida Savigny; Graphite; Hybrid biofilters

资金

  1. Fondecyt [11190352]
  2. Universidad de Santiago de Chile [091918VA]

向作者/读者索取更多资源

This study comparatively evaluated biofilters based on corncobs/sawdust coupled to microbial fuel cells (MFCs) for treating domestic wastewater. The results showed that these biofilters performed well in the removal of organic matter, nutrients, and pathogens. Specifically, the hybrid biofilter coupled to MFCs using graphite (HBG) offered the best water-energy nexus conditions.
Biofilters coupled to microbial fuel cells (MFCs) are the most integral treatment technology that generate water-energy nexus for rural zones sanitation. Moreover, biofilters coupled to MFCs, using organic residues as bed filter have not been studied. Therefore, the aim of this study was comparatively to evaluate biofilters based on corncobs/sawdust coupled to MFCs treating domestic wastewater. Biofilters based on corncobs/sawdust (50%, v/v) as bed filter incorporating microorganisms (BM), earthworms/microorganisms (BEM, Eisenia foetida Savigny), plants/microorganisms (BPM, Canna indica L.), and all organisms (HB) were evaluated. These biofilters were coupled to 2 electrochemical systems based on graphite cathodes with graphite (G)/stainless-steel mesh (M) anodes. Three nominal hydraulic loading rates (0.3, 0.5, and 1 m(3) m(-2) d(-1)) evaluating removal of organic matter, nutrients and pathogens were monitored. Voltage within electrochemical systems also were registered. Results demonstrated that biofilters based on corncob/wood chips coupled to MFCs reach mean organic matter removal efficiencies over 80% (COD: 86%, BOD5: 91%). Nevertheless, HBG was the most efficient (up to 6%) biofiltration technology monitored. The biofiltration typologies studied reported removal efficiencies of nutrients (NH3-N, PO43-) and pathogens (fecal coliforms) up to 99%. Specifically, BMG and HBG were the biofiltration typologies that registered the highest energy recovery (up to 104 mV, 29 mW m(-2)). Within all the biofiltration typologies studied, the hybrid biofiltration coupled to MFCs using graphite (HBG) is the one that offers the best water-energy nexus conditions, thanks to its biological complexity. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据