4.7 Article

Do foodborne polyethylene microparticles affect the health of rainbow trout (Oncorhynchus mykiss)?

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 793, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.148490

关键词

Salmonidae; Antioxidant capacity; Plastic; Immunity; Toxicology; Electron microscopy

资金

  1. Internal Grant Agency University of Veterinary and Pharmaceutical Sciences Brno [212/2020/FVHE]
  2. ERDF/ESF PROFISH [CZ.02.1.01/0.0/0.0/16_019/0000869]
  3. Ministry of Agriculture of the Czech Republic [RO 0518]

向作者/读者索取更多资源

The study showed that PE microparticles have toxic effects on rainbow trout, affecting various health indices such as intestinal disintegration, changes in blood indices, and damage to liver and kidney. This findings raise concerns about potential threat to aquatic ecosystems and human health.
Due to the fact that plastic pollution is a global environmental problem of modern age, studies on the impact of these synthetic materials on aquatic, and especially fish organisms, are an important part of the ecosystem and human nutrition. In our study, the toxicity of pristine polyethylene (PE) microparticles (approx. 50 mu m) on rainbow trout (Oncorhynchus mykiss) was tested in three different dietary concentrations - 0.5%, 2% and 5%. After six weeks of exposure, various health indices were evaluated. Electron microscopy of the intestine revealed the disintegration of PE particles to <5 mu m in size, and thus we concluded that microplastics are able to reach tissues. The haematological profile revealed changes in total red blood cells count and haematocrit (5% PE) which could be associated with spleen congestion observed histologically. The marker of lipid peroxidation was increased in gills suggesting the disruption of balance in antioxidant enzymes capacity and histopathological imaging revealed inflammation in higher PE concentrations. In addition, ammonia was decreased and calcium elevated in biochemical profile, confirming the gill damage. Electron microscopy of the gills showed lesions of lamellae and visible rings around the mucinous cell opening indicating their higher activity. Another injured was the liver tissue, as confirmed by hepatodystrophies and increased expression of pro-inflammatory genes in 2% PE. Impaired innate immunity was confirmed by an increased presence of mucinous cells and a decrease in leukocytes. Kidney damage manifested itself by higher expression of pro-inflammatory cytokines and histopathology. The damage in gills, liver and kidney together correlated with the increased antioxidant capacity of plasma. In conclusion, PE microparticles are able to affect health indices of O. mykiss. The potential problem for aquatic ecosystems and even human consumption should be considered. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据