4.7 Article

Lanthanum hydroxide engineered sewage sludge biochar for efficient phosphate elimination: Mechanism interpretation using physical modelling

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 803, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.149888

关键词

Adsorption; Sewage sludge; Biochar; Lanthanum hydorxide; Phosphate; Statistical physics modeling

资金

  1. National Key R&D Program of China [2018YFC1901403]
  2. Natural Science Foundation of China [21671072]
  3. Fundamental Research Funds for the Central Universities [2019kfyRCPY058]
  4. Chutian Scholar Foundation from Hubei province
  5. Analytical and Testing Centre of Huazhong University of Science and Technology

向作者/读者索取更多资源

The study utilized La OH-engineered sewage sludge biochar (La-SSBC) for efficient phosphate elimination from an aqueous medium. La-SSBC demonstrated high adsorption capacity and stability, with a unique double-layered mechanism of phosphate capturing. The release of positively charged cations and overcoming of electronic repulsion played important roles in achieving excellent adsorption capacity.
In the present study, lanthanum hydroxide (La OH)-engineered sewage sludge biochar (La-SSBC) was utilized for efficient phosphate elimination from an aqueous medium. A high adsorption capacity of 312.55 mg P/g was achieved using La-SSBC at 20 degrees C, which was an excellent adsorbent performance in comparison to other biochar-based adsorbents. Additionally, the performance of La-SSBC was stable even at wider range of pH level, the existence of abundant active anions, and recycling experiments. Statistical physics modeling with the fitting method based on the Levenberg-Marquardt iterating algorithm, as well as various chemical characterizations, suggested the unique double-layered mechanism of phosphate capturing: one functional group of La-SSBC adsorbent describing a prone direction of the PO4 ions on the stabilize surface in a multi-ionic process, forming the first layer adsorption. Additionally, SSBC played an important role by releasing positively charged cations in solution, overcoming the electronic repulsion to form a second layer, and achieving excellent adsorption capacity. The calculation of multiple physicochemical parameters including adsorption energy further evidenced the process. This two-layered mechanism sheds light on the complex interaction between phosphate and biochar. Moreover, the management of sewage sludge associated with the requirement of cost-effectively and environmentally acceptable mode. Therefore, the present investigation demonstrated an efficient approach of the simultaneous sewage sludge utilization and phosphate removal. (C) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据