4.7 Article

Temporal variation in TiO2 engineered particle concentrations in the Broad River during dry and wet weathers

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 807, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151081

关键词

TiO2; Engineered particles; Turbidity; SP-ICP-TOF-MS; Elemental ratios; Linear correlation

资金

  1. US National Science Foundation CAREER [1553909]
  2. University of South Carolina, Office of Research
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1553909] Funding Source: National Science Foundation

向作者/读者索取更多资源

The study aimed to investigate the temporal variability of TiO2 engineered particle concentrations in the Broad River, Columbia, South Carolina, United States and found that following storm events, flow discharge, bulk elemental concentrations, TiO2 engineered particle concentration, and turbidity displayed the same rise and fall trend. Additionally, linear relationships were established between turbidity and TiO2 engineered particle concentrations.
Titanium dioxide (TiO2) engineered particles are widely used in the urban environment as pigments in paints, and as active ingredients in photocatalytic coatings. Consequently, studies are necessary to quantify TiO2 engineered particle concentrations and their temporal variability in surface waters to gain better understanding about their abundance and environmental fate in order to minimize their potential environmental impacts. The objective of this study was to determine the temporal variability in the concentration of TiO2 engineered particles in the Broad River, Columbia, South Carolina, United States during dry and wet weather conditions and to examine the relationship between flow discharge, water quality indicators, and the concentration of TiO2 engineered particles. TiO2 engineered particle concentration in the Broad River water was determined by mass balance calculation using bulk titanium concentration and the increase in Tifigb ratio above the natural background ratio. The relative abundance of single metal and multi-metal Ti-bearing particles was determined by single particle-inductively coupled plasma-time of flight-mass spectrometer (SP-ICP-TOF-MS). Additionally, the elemental ratios of Ti/Nb, Ti/Al, and Ti/Fe within multi-metal Ti-bearing particles were determined at the single particle level. Discharge, bulk elemental concentrations (e.g., Ti, Al, Fe, and Nb), bulk elemental ratios (e.g, Ti/Al, Ti/Fe, and Ti/Nb), TiO2 engineered particle concentration, and turbidity displayed the same trend of rise and fall following storm events. Linear relationships were established between turbidity and TiO2 engineered particle concentrations in the Broad River for different flow regimes. However, no correlation was observed between TiO2 engineered particle concentrations and flow discharge, dissolved oxygen, pH, or ionic strength. The established correlations between turbidity and TiO2 engineered particle concentrations are important as they can be used to translate the continuously monitored turbidity to TiO2 concentrations. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据