4.7 Article

Uniqueness technique for introducing high octane environmental gasoline using renewable oxygenates and its formulation on Fuzzy modeling

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 802, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.149863

关键词

Heavy hydrocracked gasoline; Ethanol; 2-methyl furan; MTBE; Isopropanol; Fuzzy modeling

向作者/读者索取更多资源

This study proposes a new approach to examine the impact of renewable fuel additives through fuzzy modeling, showing that using low carbon oxygenates can enhance the quality and quantity of heavy hydrocracked naphtha, potentially contributing to the production of high quality environmentally friendly gasoline.
The depletion of fuel production and raising ecological issues have paid the progress of biofuels in the entire world. Among different biofuels is introducing renewable fuel additives as prospective beneficial blendstocks towards fulfilling systematic, low-carbon technologies internal combustion engines. This research article proposes a new approach to formulate a Fuzzy modeling for examining various promising alternative renewable oxygenated compounds, including ethanol, isopropanol, MTBE, and 2-methyl furan into heavy hydrocracked gasoline a base fuel. No previous study has utilized Fuzzy modeling in formulation of producing high octane fuel based on renewable additives compounds. The effect of selected additives was investigated on the antiknock characteristics. The results reported that the quality and quantity of heavy hydrocracked naphtha have been reinforced, using low carbon oxygenates. Besides, the acquired results provided the possibility to determine the optimum range of selected renewable oxygenates percentages of 30-50% wt. The calculated data of Fuzzy modeling were verified with experimental results. It illustrated that predicted environmental gasoline yields agreed well with experimental results. Finally, low carbon liquid fuel could contribute to produce high quality environmental gasoline, improve environmental characteristics, in terms of decreasing greenhouses emissions, and maximize the vehicles technologies. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据