4.7 Article

The skeleton of Balanophyllia coral species suggests adaptive traits linked to the onset of mixotrophy

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 795, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.148778

关键词

Balanophyllia; Skeletal features; Intra-skeletal organic matrix; Biomineralization; Trophic strategy

资金

  1. European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant [249930]

向作者/读者索取更多资源

The skeletal features of coral species are influenced by their evolution, distribution, and habitat, with symbiotic algae contributing to increased growth and skeletal density in certain coral species. The presence of symbiosis can also affect the organic matrix content in the skeleton, while crystallographic features remain consistent among species.
The diversity in the skeletal features of coral species is an outcome of their evolution, distribution and habitat. Here, we explored, from macro-to nano-scale, the skeletal structural and compositional characteristics of three coral species belonging to the genus Balanophyllia having different trophic strategies. The goal is to address whether the onset of mixotrophy influenced the skeletal features of B. elegans, B. regia, and B. europaea. The macroscale data suggest that the presence of symbiotic algae in B. europaea can lead to a surplus of energy input that increases its growth rate and skeletal bulk density, leading to larger and denser corals compared to the azooxanthellate ones, B. regia and B. elegans. The symbiosis would also explain the higher intra-skeletal organic matrix (OM) content, which is constituted by macromolecules promoting the calcification, in B. europaea compared to the azooxanthellate species. The characterization of the soluble OM also revealed differences between B. europaea and the azooxanthellate species, which may be linked to diverse macromolecular machineries responsible for skeletal biosynthesis and final morphology. Differently, the crystallographic features were homogenous among species, suggesting that the basic building blocks of skeletons remained a conserved trait in these related species, regardless of the trophic strategy. These results show changes in skeletal phenotype that could be triggered by the onset of mixotrophy, as a consequence of the symbiotic association, displaying remarkable plasticity of coral skeletons which repeatedly allowed this coral group to adapt to a range of changing environments throughout its geological history. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据